# Evaluating and Improving the Resilience of Wastewater Treatment Facilities and Above Ground Storage Tanks in Upper Narragansett Bay to Coastal Flooding

Ethan Bowe, Max Loo, Ethan Ross, Carter Savastano, Shane Thirkell, and Jake Weisman

**Ocean Engineering Senior Design OCE 496** 

10 May 2019

#### THE UNIVERSITY OF RHODE ISLAND

# Acknowledgments



M. Spaulding, Ocean Engineering, URI C. Baxter, Ocean Engineering, URI C. Swanson, Swanson Environmental, LLC. J. Goodwill, Civil and Environmental Engineering, URI A. Grilli, Ocean Engineering, URI **D.** Bowen, NBC I. Roberts Jr., NBC N. Boiros, NBC **B.** Patenaude, RIDEM J. Sargent, RIDEM C. Walusiak, RIDEM T. Crean, Sea Grant

# Thank You, Narragansett Bay Commission

Bucklin Point, Site Visit February 15, 2019

> Field's Point, Site Visit April 12, 2019

> > Field's Point, Site Visit October 12, 2018

Rock Tunnel, Site Visit

April 12, 2019

# Outline

- Problem Statement
- Study Objectives
- Methodology
- Results
- Summary and Conclusion





# Problem Statement: Infrastructure in Providence, RI

- Infrastructure in upper Narragansett Bay are subjected to the threat of flooding from storm surge with sea level rise
- When structures/infrastructure were originally designed, sea level rise was not considered. Fields Pt. WWTF built in 1901, Bucklin Pt. WWTF built in 1954
- FEMA FIRMS, the current regulatory practice, does not account for impact of sea level rise



Flooding from the 1938 Hurricane in downtown Providence.

# **Historical Storm Inundation at Fields Point**



# **Problem Statement: Sea Level Rise**



## Problem Statement: Pawtuxet River Floods Affecting Wastewater Treatment Facilities in 2010



# Problem Statement: Pawtuxet River Floods Affecting Wastewater Treatment Facilities in 2010



Flooded Warwick Wastewater Treatment Facility

Image: (RI DEM 2018)

- 3 consecutive storms
- 500 year flood event (9" of rainfall)
- Warwick WWTF
  - 3 days: no treatment
  - 1 month: temporary disinfection
  - 3 months: biological treatment
  - 4 months: nutrient removal
- Cranston WWTF
  - 3 days pump station shut down
  - Highest flows ever recorded





## Problem Statement: Inundation Affecting Past Above Ground Storage Tanks



An oil tank floated to the center of the road in East Providence during 1954 Hurricane Carol

### Infrastructure (WWTFs and Tank Farms) in Upper Narragansett Bay



# NBC Fields Pt. WWTF





# NBC Bucklin Pt. WWTF





- Constructed in 1947
- Treats 46 million gallons of wastewater per day
- During a wet weather event, it can treat up to 113 million gallons per day
- Treats the wastewater of about 130,000 customers
- 12 18 inches added to preexisting berm in 2014

# Study Area for Above Ground Storage Tanks



# **Study Objectives**

 Use the Coastal Environmental Risk Index (CERI) to assess flooding damage during 100 year return period storm event with sea level rise to Fields Point and Bucklin Point Wastewater Treatment Facilities (WWTFs) and Above Ground Storage Tanks (ASTs) in upper Narragansett Bay.

• Based on the evaluation of damages to WWTFs and ASTs, propose mitigation strategies to make these systems more resilient.

Methodology

# Coastal Environmental Risk Index (CERI) General Flow Chart



Methodology: CERI for WWTF

## Fields Point & Bucklin Point Treatment Functionality Index

Water levels (surge, wave height) extracted from STORMTOOL's Design Elevation maps (SDE BFE) for 100 yr storm and sea level rise

Type and elevation of WWTF components (Critical Flood Elevation) Functionality of WWTF based on primary flow path (%BOD, %Bacteria, %Nutrients)



Resulting functionality of WWTF due to storm event

- 1. Screen & Grit
- 2. Primary Clarifiers
- 3. Screw Lift Pump
- 4. Aeration Tanks
- 5. Secondary Clarifiers
- 6. Chlorination
- 7. Dechlorination

### FEMA Flood Zones with Associated Water Levels and Waves



https://www.portsmouthva.gov/332/Flood-Zones

# FEMA vs SDE Comparison (Fields Point)

#### FEMA Static BFE Map

#### SDE BFE Map

12.0 (FEMA)

17.7 (SDE)

21



100 year Storm Event + Oft SLR

## FEMA FIRMs vs SDE Water Levels



- FEMA FIRMs use 50% confidence interval
- SDE maps use upper 95% confidence interval
- Past storms follow mean water level predictions
- Hurricane of 1938 exceeds mean curve *significantly*

### Critical Flood Elevation of Different WWTF Components

#### Clarifying/Aeration Tanks:

Critical flood elevation (CFE) is the elevation above which flooding starts to impact the component





# **CFE of Different WWTF Components**

#### **Pump Stations/Substations:**

Critical flood elevation is the elevation above which flooding starts to impact the component



# **CFE of Different WWTF Components**

- Example of a pump substation at the Fields Point WWTF
- Pumps are located in basement of building (one story below grade)





## **Digital Surface Model of Fields Point**

insting and location of critical WWTF components)



### Fields Pt. Treatment Functionality Index (Sea Level Rise Without Storm)



- No inundation to primary components of wastewater treatment facility
- All components still operational with 10 feet of sea level rise

### Stormtools Design Elevation - 100 Year Storm + 0 ft SLR





Operational Impacted by Flooding 30 35 > 35

- 1. Screen & Grit
- 2. Primary Clarifiers
- 3. Screw Lift Pump
- 4. Aeration Tanks
- 5. Secondary Clarifiers
- 6. Chlorination
- 7. Dechlorination

### Stormtools Design Elevation - 100 Year Storm + SLR



# Evaluation of Mitigation Strategies: Fields Point WWTF

# **Introduction to Mitigation Strategies**

#### Hardening:

- Constructing physical barriers to block water from entering facility components (flood proof doors, temporary flood barriers)
- Waterproofing by installing submersible pumps, water resistant electrical enclosures, general waterproofing

#### **Elevating:**

- Increasing the CFE's of different WWTF components (generators, pump houses, etc)
- Adding or increasing berms and walls



Flood Control International, 2019

### Path of Inundation @ Fields Pt. WWTF (100 Yr Storm, 10 ft SLR)



## Path of Inundation @ Fields Pt. WWTF



### Elevation of Property Boundary Around Fields Point WWTF



# Evaluation of Mitigation Strategies: Bucklin Point WWTF

## Bucklin Pt. Treatment Functionality Index (Sea Level Rise Without Storm)



- Berm withstands SLR
- No impact to any components of wastewater treatment facility
- All components still operational with 10 feet of sea level rise



### Bucklin Point FEMA FIRM Static BFE vs SDE BFE

#### FEMA Static BFE Map

#### SDE BFE Map



100 year Storm Event + Oft SLR

 Inundation (ft NAVD88)

 13.0 (FEMA)
 37

 20.7 (SDE)

## Mitigating Flood Damage to Bucklin Point



Methodology: CERI for ASTs

# Flow Chart for Coastal Environmental Risk Index

#### (Above Ground Storage Tanks)



(<sup>1</sup>Kameshwar, S.; Padgett 2018)

# Evaluation of Mitigation Strategies: AST Farm

# **AST Information**

- All sites without containment berms are immediately inundated
- 60% AST's inundated 100 yr storm without SLR
- 98% AST's inundated 100 yr storm with 10 ft SLR

| Facility | PlatLot          | Name                                             | Num_ASTs |
|----------|------------------|--------------------------------------------------|----------|
| 1        | PR 056-0069-LB01 | HudsonTerminal Operations Bldg.                  | 1        |
| 2        | PR 056-0009      | Abanequi Carriers                                | 1        |
| 3        | PR 056-0327      | Univar (formerly George Mann Company)            | 1        |
| 4        | PR 056-0005      | Narragansett Electric Company                    | 2        |
| 5        | PR 101-0001      | Providence Gas Co.                               | 2        |
| 6        | PR 055-0025      | Motiva Enterpises (Star Enterprise)              | 2        |
| 7        | PR 047-0655      | Northland Environmental (PSC)                    | 3        |
| 8        | PR 057-0294      | Motiva Enterpises (Star Enterprise)              | 4        |
| 9        | PR 056-0346      | Narragansett Electric Company                    | 4        |
| 10       | PR 056-0348      | New England Petroleum Terminal LLC (NEPT)        | 5        |
| 11       | PR 055-0016      | Motiva Enterpises (Star Enterprise)              | 7        |
| 12       | PR 046-0314      | Narragansett Improvement Co.                     | 8        |
| 13       | PR 046-0160      | Sprague Energy Corp.                             | 8        |
| 14       | EP 311-010-14.00 | East Providence Water Pollution Control Facility | 9        |
| 15       | PR 101-0493      | Motiva Enterpises (Star Enterprise)              | 12       |
| 16       | PR 056-0339      | New England Petroleum Terminal LLC (NEPT)        | 13       |
| 17       | PR 056-0006      | Hudson Terminal                                  | 19       |



(DEM 2018)

# Site 11 Existing Barrier Elevation



### **Determining Tanks Affected by Inundation**

#### Polygon 11

|                         |                            | Tank<br>11-1 | Tank<br>11-2 | Tank<br>11-3 | Tank<br>11-4 | Tank<br>11-5 | Tank<br>11-6 | Tank 11-<br>7 |
|-------------------------|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Structure<br>Dimensions | Berm Height (ft NAVD88)    | 23.1         | 23.5         | 27.1         | 27.3         | 15.2         | 38.4         | 37.7          |
|                         | Tank height                | 31.4         | 31.7         | 35.0         | 35.0         | 48.9         | 70.8         | 65.0          |
| Max BFE                 | 100 yr (ft NAVD88)         | 18.4         | 18.5         | 18.3         | 18.6         | 18.9         | 18.6         | 19.1          |
|                         | 100 yr + 2 SLR (ft NAVD88) | 20.6         | 20.6         | 20.8         | 20.4         | 21.1         | 20.8         | 21.4          |
|                         | 100 yr + 5 SLR (ft NAVD88) | 23.9         | 23.2         | 23.9         | 23.6         | 24.8         | 23.9         | 24.4          |
|                         | 100 yr + 7 SLR (ft NAVD88) | 25.9         | 25.8         | 26           | 25.6         | 26.2         | 26.0         | 26.5          |
|                         | 100 yr +10 SLR (ft NAVD88) | 29           | 28.9         | 29.1         | 28.7         | 29.3         | 28.9         | 29.5          |

| BFE > CFE | Inundated |
|-----------|-----------|
| BFE < CFE | Protected |

# Inundation Path based on Digital Surface Model (DSM)



RESULTS

# Fields Point: HAZUS Percent Damage

| Scenario                     | CFE (ft<br>NAVD88)          | Inundation<br>Level (ft<br>NAVD88) | Depth above<br>CFE (ft)    | HAZUS<br>percent<br>damage (%) |
|------------------------------|-----------------------------|------------------------------------|----------------------------|--------------------------------|
| SLR only: 10 ft<br>case      | 12.8<br><b>18.2</b><br>24.5 | 15.2                               | 2.4<br><b>0</b><br>0       | 8<br><b>0</b><br>0             |
| 100 year storm<br>no SLR     | 12.8<br><b>18.2</b><br>24.5 | 17.9                               | 5.1<br><b>0</b><br>0       | 24<br><b>0</b><br>0            |
| 100 year storm<br>+ 2 ft SLR | 12.8<br><b>18.2</b><br>24.5 | 20.0                               | 7.2<br><b>1.8</b><br>0     | 30<br><b>8</b><br>0            |
| 100 year storm<br>+ 5ft SLR  | 12.8<br><b>18.2</b><br>24.5 | 23.3                               | 10.5<br><b>5.1</b><br>0    | 40+<br><b>24</b><br>0          |
| 100 year storm<br>+ 7ft SLR  | 12.8<br><b>18.2</b><br>24.5 | 25.5                               | 12.7<br><b>7.3</b><br>1.0  | 40+<br><b>30</b><br>5          |
| 100 year storm<br>+ 10ft SLR | 12.8<br><b>18.2</b><br>24.5 | 28.9                               | 16.1<br><b>10.7</b><br>4.4 | 40+<br><b>40+</b><br>17        |
| FEMA FIRMS                   | 12.8<br><b>18.2</b><br>24.5 | 14.5                               | 1.7<br><b>0</b><br>0       | 8<br>0<br>0                    |

# FEMA vs SDE Comparison (Fields Point)

#### FEMA Static BFE Map





#### Fields Point CFEs

#### 100 year Storm Event + Oft SLR

Inundation (ft NAVD88) 2.4 (FEMA) 17.9 (SDE) 48

- Low: 12.8 ft (NAVD88)
- Mean: 18.2 ft (NAVD88)
- High: 24.5 ft (NAVD88)

### Fields Point Concrete Wall Protection for Different Storm Scenarios



### Fields Point Concrete Wall Length







### Fields Point Concrete Wall Length







### Fields Point Concrete Wall Average Height

| Storm<br>Scenario       | Wall Height<br>A (Grade) | Wall Height<br>B (Grade) | Wall Height<br>C (Grade) | Wall Height<br>D (Grade) |
|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 50 Year                 | 4 ft                     | 4 ft                     | -                        | -                        |
| 100 Year + 0<br>SLR     | 8 ft                     | 8 ft                     | -                        | -                        |
| 100 Year + 2<br>ft SLR  | 10 ft                    | 10 ft                    | 3 ft                     | -                        |
| 100 Year + 5<br>ft SLR  | 13 ft                    | 13 ft                    | 6 ft                     | -                        |
| 100 Year + 7<br>ft SLR  | 15 ft                    | 15 ft                    | 6 ft                     | -                        |
| 100 Year +<br>10 ft SLR | 18 ft                    | 18 ft                    | 6 ft                     | 2 ft                     |



### Concrete Wall Volume Based on Storm Scenario



| Storm Scenario       | Volume (ft <sup>3</sup> /linear ft of wall) |
|----------------------|---------------------------------------------|
| 50 Year              | 21.6                                        |
| 100 Year + 0 SLR     | 31.32                                       |
| 100 Year + 2 ft SLR  | 32.45                                       |
| 100 Year + 5 ft SLR  | 36.45                                       |
| 100 Year + 7 ft SLR  | 61.69                                       |
| 100 Year + 10 ft SLR | 82.62                                       |

(J.M Duncan & R.L Mokwa, 1998)

### Field's Point: Concrete Wall Cost Estimation Based on RSMeans

- Unit cost of cast concrete retaining walls = \$15.8 / ft<sup>3</sup>
- Unit cost includes bare material, labor, equipment and overhead & profit.



RSMeans

## Hardening Mitigation Strategies for Fields Point: Floodproofing

Both permanent and temporary barriers that can be installed to pump station/substations buildings are possible strategies to reduce the possibility of flooding.







Trademark Hardware, 2019



Primary Sludge Pump Station at Bucklin Point

## Hardening Mitigation Strategies for Fields Point: Waterproofing

Installation of waterproof pumps and water resistant electrical enclosures are other alternative mitigation strategies when prioritizing the pump stations in the WWTF



### Bucklin Pt. Berm Upgrade Proposal



Current Berm Height approximately 20.5 ft (NAVD88)

Total Berm Length approximately 3000 ft.

| Storm Scenario      | Base Flood Elevation | Berm         |  |
|---------------------|----------------------|--------------|--|
|                     | (ft NAVD88)          | Upgrade (ft) |  |
| Current Berm Height | 20.5                 | -            |  |
| 100 Year + Oft SLR  | 22                   | 2.5          |  |
| 100 Year + 2ft SLR  | 24.1                 | 4.6          |  |
| 100 Year + 3ft SLR  | 25.1                 | 5.6          |  |
| 100 Year + 5ft SLR  | 27.2                 | 7.7          |  |
| 100 Year + 7ft SLR  | 29.4                 | 9.9          |  |
| 100 Year + 10ft SLR | 32.6                 | 13.1         |  |

## **Bucklin Berm Upgrade Cross Section**

100 Year Storm, 0 ft. SLR (All Heights in feet, NAVD88)



### Bucklin Pt. Berm Upgrade Cost Calculation

Unit cost of berm upgrade (fill soil only) =  $3.04 / ft^3$ 

Unit cost includes fill/loading (0.83/ ft<sup>3</sup>), spreading & compacting (1.81/ ft<sup>3</sup>) and hauling (0.38/ ft<sup>3</sup>)

| Storm Scenario          | Volume (ft <sup>3</sup><br>per linear ft<br>of berm) | Total Cost<br>(\$) |   |              | Cost of Berm Upgrade                                                                                                           |  |  |
|-------------------------|------------------------------------------------------|--------------------|---|--------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| 100 Year + 0 SLR        | 642.7                                                | 5,855,000          |   | 50           | \$49,344,000                                                                                                                   |  |  |
| 100 Year + 2 ft SLR     | 1325.03                                              | 12,072,000         | á | 40 -         | \$33,033,000                                                                                                                   |  |  |
| 100 Year + 5 ft SLR     | 2570.07                                              | 23,416,000         |   | Cost (Millio | \$23,416,000<br>\$12,072,000                                                                                                   |  |  |
| 100 Year + 7 ft SLR     | 3625.63                                              | 33,033,000         |   | 10 Tota      | \$5,855,000                                                                                                                    |  |  |
| 100 Year + 10 ft<br>SLR | 5415.87                                              | 49,344,000         |   | 0 -          | 100 Year 100 Year 100 Year 100 Year 100 Year<br>Storm + 0' SLR Storm + 2' SLR Storm + 5' SLR Storm + 7' SLR Storm + 10'<br>SLR |  |  |
|                         |                                                      |                    |   |              | Storm Scenario                                                                                                                 |  |  |

59

## Damage Calculation for Selected AST: Polygon 10



### Damage Probabilities for Multiple Fill Levels



Tank 2 Probability of Failure for an Inundation Height based on 100 year storm with 10 ft SLR

# **BFE - CFE**



### Proposed Barriers for ASTs - 100 Year Storm + 0 SLR



### Proposed Barriers for ASTs - 100 Year Storm + 10 ft SLR



# Summary

#### **Problem Statement:**

- Areas in Upper Narragansett Bay susceptible to threat of coastal flooding and sea level rise
- These areas have high concentrations of infrastructure

#### Study Objective:

- Use CERI to assess flooding damage during 100 year return period storm event with sea level rise to Fields Point and Bucklin Point WWTFs and ASTs in Upper Narragansett Bay.
- Based on the evaluation of damages to WWTFs and ASTs, recommend mitigation strategies to make these systems more resilient.

## **Conclusions: Fields Point WWTF**

- Existing HAZUS risk index too general for level of our analysis
- Determined detailed amount of damage to WWTF using TFI
- All of Fields Point inundated for 100 yr storm with 10 ft of SLR
- Elevating strategies such as building a barrier or hardening strategies such as floodproofing doorways can be applied



Fields Point Wastewater Treatment Facility

## **Conclusions: Bucklin Point WWTF**

- If berm is overtopped Bucklin Point is rendered inoperable
- All of Bucklin Point inundated for 100 yr storm with 0 ft of SLR
- Increasing existing berm height around facility best strategy for mitigating damage from coastal flooding



Bucklin Point Wastewater Treatment Facility

## **Conclusions: Above Ground Storage Tanks**

- 60% of ASTs inundated for 100 yr storm without SLR
- 74% of ASTs inundated for 100 year with 5ft SLR
- 98% ASTs inundated for 100 yr storm with 10 ft SLR
- It is recommended that all tanks are anchored and barriers are added or height is increased



Above Ground Storage Tanks near Fields Point

